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Abstract. This paper gives a brief survey and assessment of computational methods for finding 
solutions to systems of nonlinear equations and systems of polynomial equations. Starting from 
methods which converge locally and which find one solution, we progress to methods which are 
globally convergent and find an a priori determinable number of solutions. We will concentrate on 
simplicial algorithms and homotopy methods. Enhancements of published methods are included and 
further developments are discussed. 
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1. Introduction 

Systems of nonlinear equations play an important role in modelling scientific 
problems, engineering problems and commercial problems. These applications 
provide a large source of systems of nonlinear equations. If we wish, e.g., to solve 
a linear or nonlinear optimization problem, applying the Kuhn-Tucke r  condi- 
tions, we end up with a system of nonlinear equations. The motion of robot arms, 
rendering of surfaces in CAD, chemical reactions, and many other applications 

are sources of nonlinear equations. 
Due to the difficulties encountered in trying to solve systems of nonlinear 

equations, such systems have always been one of the frontiers of research and 
have attracted the best minds. Let  us look at some old and new statements about 
the solution of nonlinear equations. 

In 1958 Har t ree  ([43], p. 233) writes about nonlinear algebraic equations in 
three or more variables: "There  is no satisfactory practical method,  graphical or 
tabular, of displaying the behaviour of functions of three or more variables, and 
the appropriate location of solutions of such equations is therefore difficult." This 
was written before libraries of computational algorithms like N A G  or IMSL were 
created. But has anything changed? 

In 1983 we read in the IMSL Reference Edition ([78], p. 240): "Solving systems 
of nonlinear equations is perhaps the most difficult problem in all of numerical 
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computation.  It is not unheard of for even 5 equations to be very difficult; one can 
'hide' a solution in 5-dimensional space rather easily." 

Has further insight and recent activity and experience with computational 
methods contributed to more optimism? It seems not. Let  us quote from a widely 
used collection of algorithms published in 1989 ([74], p. 305): "We make an 
extreme,  but wholly defensible statement: There  are no good, general methods 
for solving systems of more than one nonlinear equation. Furthermore,  it is not 
hard to see there will never be any good, general methods."  

In this paper we will give a brief survey of computational methods for systems 
of nonlinear equations. We will show that the situation is not as bleak as above 
quotations make us believe. We will show how the additional problem of having 
more than one solution to systems of nonlinear equations has mobilized the 
imagination of researchers. We will show how entirely new fields of mathematics, 
like algebraic geometry,  algebraic topology and others (not usually associated 
with computational methods),  have been employed as new resources. We will 
show how these new techniques have led to novel methods, which not only exhibit 
global convergence, but are also capable of finding more than one solution. On 
the other  hand, we will discuss recent advances in research in a field now known 
as 'fractology', which not only have been given us pretty pictures, but also have 
made it clear that methods that have been used for centuries for solving single 
equations (e.g., Newton iteration) are not suitable for finding more than one 
solution in a controlled manner. 

2. Classical Methods and Their Limitations 

The most widely applied systematic methods for solving systems of nonlinear 
equations are contraction mappings. The first abstract formulation of the contrac- 
tion mapping principle was given by Banach [6]. 

A mapping T:  X - +  X is said to be a contraction mapping if 

d ( r (x ) ,  T(y))  <~ K d(x, y) 

is satisfied for all x, y E X, where 0 ~< K < 1, X is a metric space, and d ( . ,  .) is a 
metric on X. 

Krasnoselskii and his co-workers have perhaps pushed the utilization of the 
contraction mapping principle as far as one can go. See, e.g., [54] for fixed point 
theorems in a compressed cone and in an expanding cone. 

The excellent book on iterative methods by Ortega and Rheinboldt [71] is 
utilizing mainly multivariate calculus and first derivatives. In this book we find the 
following remark: "The  influence of the variation of the equation, the dimension, 
and the initial data upon the outcome of the computation is still very little 
understood both from a practical as well as a theoretical v i e w p o i n t . . . "  We will 
address some of these questions later. 

An excellent survey covering algorithms for finding zeros and extrema is Brent  
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[8]. The main mathematical tools used in this 300 page survey can be character- 
ized by metric spaces, search methods, some differentiability, random starting 
points, rates of convergence, etc. Brent's survey includes computer programs. 

The widely used Newton method and variations of Newton's method can be 
considered to be contraction mappings in the regions in which they converge. The 
1970s saw extensive research into various aspects of Newton methods, especially 
into improving convergence. 

In 1976 Smale [86] introduced "global Newton methods" in connection with 
price adjustment processes. His main mathematical tools are taken from differen- 
tial topology and include diffeomorphisms, sets of measure zero, Sard's theorem, 
etc. 

In 1981 Smale [87] applied global Newton methods to finding zeros of polyno- 
mials. He gave an algorithm for finding zeros of polynomials, which had a 
probability/x of failure (with 0 </x < 1), or would find a root with probability of 
1 - i x .  The mathematical theory of polynomials of degree n guarantees the 
existence of n roots. An algorithm which does not mirror this mathematical result 
is unsatisfactory. It is inconceivable that an algorithm which finds zeros with 
probability 1 - / x ,  but cannot guarantee to find a zero, is ever to be used in a 
safety critical application (e.g., in control theory). 

By 1985 the field had developed further. Newton iterations in the complex 
plane became famous. Mandelbrot had produced his sets and the French mathe- 
matician Gaston Julia had been rediscovered. Computer generated graphics of 
polynomials was published [72]. The regions of attraction, which are so useful for 
Newton iteration and global Newton methods, had boundaries of amazing 
complexity (Julia sets). These beautiful pictures with their intricate baroque 
ornaments as boundary of the regions of attraction must have shown every 
enthusiast of iterative methods, especially Newton methods, that this type of 
behaviour makes such algorithms unacceptable for any type of safety critical 
engineering application. Smale in his 1985 paper ([88], p. 97) drew the inevitable 
conclusion and stated: "For polynomials of higher degree, Newton's method is 
not generally convergent in any reasonable sense." 

One of the features of nonlinear equations which distinguishes them from linear 
equations is the fact that in general they have more than one solution. This simple 
fact immediately restricts the usefulness of contraction mapping methods. Con- 
traction mappings can only have one fixed point and in the context of nonlinear 
equations this means that they can only be used locally. Furthermore, not all 
solutions can be transformed into attractive fixed points and therefore contraction 
mappings cannot find them, even if we know a starting point for the iteration near 
the solution. 

The heavy emphasis in the literature on contraction mappings cannot conceal 
the fact that such methods have a built-in inefficiency if one is interested in finding 
more than one solution, e.g., all roots of a polynomial. Even if different starting 
values are used, the same solution may be found several times. 
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Another  fact so clearly pointed out in "Numerical Recipes in PASCAL" [74] is 
the irritating property of systems of nonlinear equations (2 or more variables) to 
have a solution set, which in general does not consist of isolated points but of 
lower dimensional manifolds (e.g., lines of solutions, hyperplanes, etc.). 

Let  us recall some material on ideals from algebra. If we consider, e.g., the ring 
of bounded continuous functions C[a, b] on a closed interval a ~< x ~< b and X is a 
subset of [a, b], then the set 

I(x) : { f l f (x)  : 0 for every  x x )  

is an ideal in this ring. 
If we restrict ourselves for the moment  to systems of polynomials in more than 

one variable, then systems with isolated solution points are called systems with 
zero-dimensional polynomial ideals. Numerical algorithms for finding roots of 
such systems have been published [24]. Algebraic manipulation is capable of 
factoring such systems too. The difficulties start when we consider general 
systems, where the solution set no longer consists of isolated points. Algebraic 
manipulation, i.e., factoring such polynomials is considered an open problem 
[21]. Nevertheless, we will show how with the help of true homotopy algorithms 
the numerical solution of such systems can be achieved. 

3. Simplicial Algorithms 

The backbone of all simplicial algorithms is Sperner's lemma [90]. One version of 
Sperner 's  lemma [31, 91] can be stated in the following form. 

L E M M A .  Given a subdivided n-dimensional simplex with integers {0, 1 , . . . ,  n} 
attached to its vertices, then the number of (n - 1)-dimensional simplices on the 
boundary with labels {0, 1 , . . .  , n - 1} is equal to the number of  simpIices in the 
interior with labels {0, 1, . . . , n}. The simplices are counted with orientation. 

An illustration of the lemma is given in Figure 1. 
Sperner 's  lemma was published in 1928 and it was always clear that there is 

a close connection with the famous Brouwer fixed point theorem [10]. In 1972 
Yoseloff [99] showed that Sperner 's lemma and Brouwer's  fixed point theorem are 
equivalent. Following Sperner's lemma, a large number of labelling lemmas has 
been published, e.g., Tucker [95], Ky Fan [29], van der Laan and Talman [61], 
Freund [36], and van der Laan et al. [62]. For a detailed list see Forster [31]. 

Given a completely labelled simplex on the boundary,  it is Sperner's lemma 
that allows us to construct globally convergent algorithms without imposing 
restrictive conditions on the function (e.g., we do not require the mapping T to be 
a contraction mapping). From the completely labelled ( n -  1)-dimensional sim- 
plex on the boundary we construct a chain of n-dimensional simplices leading 
from the boundary to the completely labelled n-dimensional simplex in the 
interior. Structures of this kind are called pseudomanifolds. 
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Fig. 1. Illustration of generalized Sperner lemma. Count on boundary of oriented one- 
dimensional simplices labelled 01 equals 2. Count in interior of oriented two-dimensional 
simplices labelled 012 equals 2. 

The theory of simplices and other piecewise linear structures can be found in 
almost any book on algebraic topology, e.g. [89]. For an extensive coverage of the 
topology of simplices, but without any material on algorithms, see, e.g. [100, 80]. 

Because of its central importance for simplicial algorithms we give the defini- 
tion of a pseudomanifold: 

An n-dimensional pseudomanifold is a simplicial complex K such that: 
(a) Every simplex of K is a face of some n-dimensional simplex of K. 
(b) Every (n - 1)-dimensional simplex of K is the face of at most two (and at 

least one) n-dimensional simplex of K. 
(c) Any two n-dimensional simplices can be used as the first and last members of 

a finite sequence of n-dimensional simplices such that the intersection of any 
two consecutive n-dimensional simptices in the sequence have an ( n -  1)- 
dimensional simplex in common. 

Pseudomanifolds can be constructed in many different ways. Instead of attaching 
integers to each vertex of a simplex, we can attach vectors (vector labelling) and 
obtain a pseudomanifold. Another way of constructing pseudomanifolds is due to 
Scarf [84] via 'primitive sets'. For an explanation of the different concepts and the 
connection between all these different methods of creating pseudomanifolds see, 
e.g.,  Gould and Tolle [41]. If the labelling is chosen in an appropriate manner 
than the completely labelled simplex corresponds to an approximate fixed point 
x* of the mapping T(x), i.e., T(x*) = x*. 

We give an example of an integer labelling function and a vector labelling 
function. 
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E X A M P L E .  Definition of standard integer labelling on an n-dimensional eucli- 
dean space ~n: 
For  any x E Nn let 

i = min {Jl fj(x) - x~ = max (fk - x~)},  
Y 

i , j , k = l , . . , n .  
Then x receives the label I(x) where 

and 

l ( x ) = i  i f f / - x  i>~0 

l ( x )  = O i f f / - x  i < O . 

A completely labelled simplex (i.e., a simplex with all labels from 0 to n) then 
approximates a fixed point x* of the mapping f (x) .  

Definition of standard vector labelling on an n-dimensional euclidean space Nn: 

A point x ~ Nn receives the (n + 1)-vector l(x) where 

l i ( x )=f i - -X i - [ -1  i = 1  . . . .  , n  

and 

lo(x ) = 1.  

An n-dimensional simplex with vertices (y0, y l , . . . ,  yn) which satisfies the 

equation 

ail( Y i) = e ,  
i-O 

where e = (1 . . . .  ,1) ,  with nonnegative Ai's, then gives a good approximation to a 
fixed point x* of the mapping f (x) .  

4. Development and Applications of Simplicial Algorithms 

Historically fixed points have played an important role. Poincar~ seems to have 
been the first to apply fixed point results to state existence theorems [73]. After  
Brouwer 's  proof  of the fixed point theorem now named after him [10], a large 
number  of other  fixed point theorems have been developed. These fixed point 
theorems were then used to show that complicated nonlinear problems had a 
solution, see, e.g.,  Istratescu [46] or Dugundji and Granas [25]. It was a 
theoretical approach with no constructive method to back it up. It is well known 
that Brouwer  later in his life distanced himself from his most famous theorem. In 
[11] Brouwer  shows that there is no way of determining a fixed point as a 
consequence of the invalidity of the Bolzano-Weierstrass theorem in intuitionism. 
It is interesting that he replaced his original theorem by a theorem which states 
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that we can only find an approximate fixed point. This is the very thing fixed point 
algorithms allow us to do. 

Debreu introduced fixed point theorems in his book "Theory of Value" [22]. 
Fixed point theorems, especially Brouwer's theorem and Kakutani's theorem [48], 
were used to show the existence of solutions or the existence of equilibrium prices 
in economic models. Because of the importance of such models the race was then 
on not only to be able to theoretic~illy show that an equilibrium price exists, but 
also to actually compute this price. In 1967 Scarf [83] succeeded in giving the first 
constructive proof of Brouwer's fixed point theorem using 'primitive sets', a 
concept related to concepts used in linear programming. See also [84]. Various 
other constructive proofs of Brouwer's fixed point theorem using more traditional 
mathematical methods followed in quick succession, see, e.g., Todd [93]. Other 
algorithms are, e.g., Eaves [26], Saigal [81], Allgower and Keller [2], Wright [98], 
etc. 

A new way of attaching labels to vertices of simplices was introduced by Merrill 
in his Ph.D. thesis [66]. A further improvement of first generation simplicial 
algorithms was introduced by van der Laan and Talman see [60, 92]. They 
introduced algorithms which could start anywhere on the simplex and not just at a 
vertex. For another approach to the restart problem see Tuy [96]. 

The next improvement developed was grid refinement. In order to obtain better 
accuracy without having to restart the whole algorithm, new algorithms were 
developed which allowed to use the results obtained on coarse grids and refine the 
solution further on finer grids. Kuhn and MacKinnon developed the sandwich 
method [56]. Van der Heiden [44] showed that Scarf's 'primitive sets' could be 
extended to a grid refinement algorithm. For others see, e.g. [93]. See also 
Kojima and Yamamoto [51]. 

An important practical part of simplicial algorithms are the actual details of 
triangulations. For algorithms which start on a coarse grid and then obtain better 
and better approximations on finer grids, a concise form of the pivoting rules is 
needed. Pivoting rules for various triangulations are, e.g., given in Todd's book 
[93]. Furthermore,  see, e.g., Kojima [50], and Eaves' book [27]. 

As an example we give one of the simplest pivoting rules. Simplices are 
described by one starting vertex and a number of vectors which are added in a 
certain order to this starting vertex. Each endpoint of such a vector is a vertex of 
the simplex. This ordered way of adding vectors allows to give a number to each 
vertex of the simplex. The algorithm requires us to drop vertex number i from a 
simplex o- when, e.g., the integer label obtained from the labelling function is 
duplicated. What we then need is to obtain a new vertex replacing the dropped 
vertex, so that we obtain a new simplex ~-, adjacent to the simplex or. A pivoting 
table is a simple way of expressing this in concise form. We give the simplest 
pivoting table for ~n with triangulation K1. 

The simplex o- is described by a starting vertex y0 and has unit-vectors u ~j) 
added in the order described by a permutation of 1 . . . .  , n, which we call ~-. The 
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new simplex r has starting vertex z ° and the unit-vectors u p(j) are then added in 
the order  determined by the permutation p. The pivoting table allows us to find 
the new starting vertex z ° and the new permutation p, depending on the dropped 
vertex i and using the old starting vector y0 and the old permutation ~-. The 
number  of subdivisions in the unit-vectors u is m. 

z ° =  p = 

i = 0 yO _~_ 1 uw(1 ) 
m 

O < i < n  yO 

i = n  yO_ 1 u~(. ~ 
m 

(.rr(2) . . . . .  ~-(n), ~r(1)) 

(~r(1) . . . . .  ~r(i + 1), ~r(i) . . . . .  ~'(n)) 

(~'(n), 7r(1) . . . . .  ~r(n - 1)) 

Another  practical aspect of simplicial algorithms is concerned with minimizing the 
number  of simplices in an n-dim cube. It is straightforward to subdivide an n-dim 
cube into n! simplices. Mara [64] has shown that it is possible to subdivide a 3-dim 
cube into 5 simplices instead of 3! = 6 simplices. A smaller number of simplices in 
a cube may lead to a faster algorithm, because the number of simplices which has 
to be traversed may be smaller. To find the minimal triangulation of n-dim cubes 
is obviously a combinatorial problem of some importance. For further investiga- 
tions see, e.g., Cottle [16], and Sallee [82]. For some recent descriptions of 
triangulations which allow a reduction in the computational cost of simplicial 
algorithms see Dang [17, 18, 20] and Dang and Talman [19]. For a further 
development  of Dang's triangulation, see [94]. 

Simplicial algorithms have been used in a number of applications, see, e.g. [79, 
49, 28]. The usefulness of simplicial algorithms can, e.g., be seen in an economic 
application modelling the effect of the U.K. joining the E.E.C.  [67]. An 
application in connection with a U.S. tax model is given in [85]. An example of 
te lephone pricing is given in [23]. Allgower used simplicial algorithms for solving 
discretized versions of nonlinear differential equations [3]. See also the excellent 
survey [4] and the recent book [5] which includes computer  programs. 

A wide range of applications in the engineering sciences is given in Watson [97], 
but he uses mainly methods which we will briefly describe in the next section. 

5. Algorithms Based on Nonsimplicial Techniques 

A number  of algorithms have been published based on developments in differen- 
tial topology. The most influential background books are Milnor [68] and 
Guillemin and Pollack [42]. Chow et  al .  [15] published a proof of Brouwer 's  fixed 
point theorem based on material from differential topology. The theorem makes 
use of Sard's theorem and the algorithm works with probability one. See also 
Alexander  and Yorke [1]. A recent very detailed exposition, including FOR- 
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T R A N  programs, of these algorithms can be found in Morgan's book [69]. 
Algorithms based on differential topology have a number  of theoretical flaws 
when one takes into account that these algorithms are implemented on digital 

computers.  
First of all, these algorithms work except on sets of measure zero. It is well 

known that a finite set of numbers has measure zero. The machine numbers, i.e., 
the numbers available on a digital computer,  represent a set of measure zero. 
Nevertheless,  nobody has yet published a counterexample,  where the machine 
numbers are the set of measure zero, where such an algorithm does not work. In 
practical examples this flaw did not seem to have any noticeable influence on the 
working of such algorithms. 

The other  major flaw of these algorithms is the fact that theoretically one 
follows a continuous path, but on a digital computer one has only discrete points. 
One hopes that the discrete points the algorithm actually follows represent points 
of a continuous path. In applications with more than one solution it has actually 
been observed that the algorithm jumps from one solution path to another  (i.e.,  
the discrete set of points belonging to one solution path are left and the discrete 
set of points belonging to another  solution path are followed). This happens 
where solution paths are close together,  i.e., the step size of the algorithm is of 
the same order as the distance between two solution paths. Morgan, e.g., 
describes this unhelpful feature [69, p. 9]. Various measures have been proposed 
to remedy this situation, but all these measures are only an ad hoc solution to a 
mismatch of a body of continuous theory,  namely differential topology, and 
implementation on a discrete machine, namely a digital computer.  

For  a selection of applications of such algorithms see, e.g. [15, 97]. Applica- 
tions to eigenvalues and eigenvectors are given in [63]. 

Another  example of the influence of modern mathematical developments on 
algorithms for the solution of systems of nonlinear equations is the book by 
Rheinboldt  on parameterized nonlinear equations [77]. In this case differential 
geometry  is used as theoretical background and continuation methods are used to 
trade one-dim solution submanifolds. A F O R T R A N  package is included. 

6. Kuhn's Algorithm for Finding All Zeros of a Polynomial 

One of the most significant developments in solving equations with more than one 
solution is Kuhn's method for finding all roots for a single polynomial. This 
method  which is based on topological principles and on a generalized version of 
Sperner 's  lemma can only be described as ingenious. From the coefficients of a 
polynomial of degree n we can a p r i o r i  determine the size and mesh of a 
triangulated region which will contain all solutions. 

In Kuhn's  notation we have a polynomial 

f ( z )  = z ~ + a ~ z  n - 1  + . . .  + a~  
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with in general complex coefficients a k. The size of the square region in the 
complex plane which we have to triangulate ranges from [ - R ,  +R]  on the real 
axis and from [ - i R ,  + iR] on the imaginary axis. R is given by 

R = 48 max l a~l + 4.  
k 

In order  to triangulate the square region we have to subdivide the interval [0, R]. 
The minimum number of subdivisions M we have to have on [0, R] is given by 

1 
M ~ > ~ ( n + 2 ) ,  

where n is the degree of the polynomial. The labelling function will then lead to n 
starting segments with appropriate labels (e.g., labels 01), on the boundary of this 
region. Pivoting steps will lead us to n completely labelled triangles (e.g., labelled 
012) inside the region representing n approximate solutions to the roots of the 
polynomial [55]. 

This method not only represents a new proof of the fundamental theorem of 
algebra, but also includes its own convergence proof, when regarded as a grid 
refinement algorithm (i.e., when we have layers of finer and finer grids connected 
by a suitable triangulation). The method has been developed in 3 papers [55, 57, 
58] including computational complexity and a priori error  estimates for the 
approximate solutions obtained. For other complexity results see [75]. 
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Fig. 2. Paths for a polynomial of degree 3 f(z)= z 3 +(0.3 + 1.10=0 on part of the 
triangulated region. 
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Error estimates: If we have found a completely labelled triangle and we have 
used the labelling function given by Kuhn, then a root of the polynomial f (z)  is 
closer to this triangle than (6n6) /~,  where 6 is the mesh size of the triangle [57]. 

In [58] a tighter bound is given for polynomials of degree n > 1: There is a root 
o f f ( z )  closer than 3/4n6 to the completely labelled triangle. In Section 12 we will 
generalize above error  estimates to arbitrary labelling functions. 

A computational complexity result is also available [58]: In order  to evaluate a 
root  2j of f (z)  with accuracy ~7, the number  of function evaluations of f (z)  is not 
greater  than O(n 3 log2(n/~/)). 

Kuhn's  method has extremely desirable properties. It is a method based on 
sound mathematical principles. Topological properties are used, i.e.,  properties 
invariant under deformations,  which is not only important as a technique for 
tracing approximations of roots, but also important when we take the inevitable 
rounding errors on computers into account. Pivoting steps provide a secure path 
to the approximate solution (no " jumping" from one solution path to another 
solution path is possible). The number of solutions is known a priori and we can 
guarantee that this number  of solutions will actually be found (no "probabil i ty" of 
failure associated with this algorithm). The size of the region in which the 
algorithm operates is known a priori and the mesh size for the triangulation of the 
region is also known a priori (no "guessing" of starting values "sufficiently close 
to a solution" is required).  It would be very desirable to be able to generalize 
Kuhn's  algorithm to systems of polynomial equations and retain as many of the 
above mentioned desirable properties as possible. In order to do this, we first 
have to clean up one of the shortcomings of Kuhn's convergence proof. 

For  the n isolated roots of a polynomial f (z)  of degree n, we have n sequences zjk, 
j = 1 . . . .  , n, converging to the n roots 21 . . . .  , 2 , ,  i.e., 

l i m z j e = 2 j ,  j = l , . . . , . . . ,  . . . .  n ,  
k~oc  

on our  triangulation with finer and finer grid. In dealing with multiple roots Kuhn 
first perturbs the polynomial f (z)  by adding a term e > 0, i.e., he perturbs the 
polynomial with multiple roots f (z)  to a polynomial with simple roots f (z)  + e. He 
then considers isolated roots and then lets e tend to zero. For the roots Zj of this 
polynomial we have to show 

lira lim zj~(e) = lim lim z.k(e ) = lim zjk = 2j.  
e ~ 0 +  k----~ k ~  e ~ 0 +  I "  k---~ 

The use of properties of complex mappings suggests this approach. Nevertheless, 
it is now generally accepted by researchers who have considered the proof  [57] 
that there is a gap in the proof  [53, 76, 59]. If we regard the roots Zj of a 
polynomial as continuous functions of the coefficients ak, then at each grid level 
d = 0, 1 . . . .  we have an approximation zjd, d = 0, 1 . . . . .  For the perturbed 
polynomial f (z)  + e we have approximations zid(e ). Therefore,  we have a se- 
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quence of functions zja(e), d --- 0, 1 , . . .  and in order to be able to interchange 
limits 

lim lira zjd(e ) = lim lim zjd(e ) 
e--->0+ d - -~  d-->~ ~-->0+ ' 

we have to show uniform convergence of the sequence Zjd, d = 0, 1 , . . . ,  which 
seems to be missing in [57]. Uniform convergence seems difficult to establish in 
this case. 

It has been reported [59] that computational results for problems involving 
multiple roots seem to confirm that for smaller and smaller grid sizes (grid 
refinement) some of the approximate roots show erratic behaviour and do not 
seem to converge to the actual roots of the polynomial. This is taken as 
confirmation that the theoretical flaw in the proof  for multiple roots actually 

manifests itself in the algorithm when multiple roots are present. 
In the next sections we will show: (a) that Kuhn's method is sound; (b) that a 

satisfactory convergence proof for multiple roots can be given without perturbing 
the original polynomial (by introducing elements from Nielsen fixed point theory,  
a body of research which deals with the minimum number of fixed points invariant 
under  homotopies);  and (c) we offer an explanation for the computational tests in 
which multiple roots do not seem to converge to the actual roots when the 
approximations are followed from a layer d to the next layer d + 1 with finer grid. 

7. Some Nielsen Fixed Point Theory 

In order  to give a convergence proof for Kuhn's algorithm for the case of multiple 
roots,  we will use ideas from Nielsen fixed point theory. This will allow us to 
avoid the difficulties connected with the interchange of limits discussed in the last 

section. 
To illustrate the beautiful ideas behind Nielsen fixed point theory,  we will first 

show that on a unit circle S 1 in the complex plane C two polynomials, a 

polynomial f (z)  of degree d 1 and a polynomial g(z) of degree d~, have at least 
Idl - d2[ coincidence points, that is Idl - d21 points z* such that f (z*)  = g(z*) on 
51. We can then specialize g(z) either to z, i.e., to finding points z* which satisfy 
the fixed point equation f (z*)  = z* on 51. Alternatively, we can specialize g(z) to 
an arbitrary constant a E 51, i.e., we can specialize to the equation f ( z ) =  a in 
order  to find constant points z* such that f ( z * ) =  a on 51 (i.e., the argument 
value 4~ = a on 51). For  the equation f (z )  = 0 on 5 ~ we can choose as a special 
case the argument value 4, = 0 on 51 and look for constant values z* such that 
f ( z*)  --- 0 on S ~. We will deal in solution classes and will show that each solution 
class is not empty. Then we will show that Kuhn's algorithm converges even in the 
case of multiple roots. 

Let  S 1 = {z ~ C llzl = 1} be the unit circle in the complex plane C. Let  

p :  ~ --'--> 5 1  
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be the exponential  map, i.e., 

p (  ch ) = z = e i+ , 

with ~ the argument of z. The argument of z is a multivalued function of z, i.e., 

for every map 

f :  ~ 

we can always find argument expressions 

f :  ~--~ 

such that 

f ( e  i*) = 

We can find a whole series of such a rgume~  expressions differing from each other  
by integer multiples of 2~-. We will write f0 for the argument expression with 

f0(4~ = 0) E [0, 2 ~ ) .  

We have )~ = 3~ + 2k~-. The degree of f is d I and therefore the functions )~ are 

such that 

)~(~b + 2~-) = fk(4~) + d12~". 

If z = e i¢~ is a coincidence point, i.e., 

f ( z )  = g ( z )  , 

then q~ is a coincidence point of some argument expression o f f ,  i.e., g(4~) = f~(4') 
for some k. On the other  hand, if ~b is a coincidence point of f~ and q is an 
integer, then we can show that q5 + q2~" is a coincidence point of ft iff 

l -  k = q ( d  1 - d 2 )  . 

This follows from 

~ ( ~  + q2~-) 

= )~(~b + qZ~r) + 12~- 

= J~(4~ + q2~-) - k2~- + 12~- 

= f~ (ch )  + d ~ q 2 ~  + 2 ~ - ( / -  k) 

= ~(c} )  + d ~ q 2 ~  + 2 ~ - ( / -  k) 

= g ( 4 ' )  + d 2 q 2 ~  + d~q2~ + 2~-(1 - k )  - d z q 2 T r  

= ~(~b + q2~-) + 2rr{q(d~ - d2) - (k - / ) } .  

l~herefore, if 

l y { k  mod(d  1 - d2) , 
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then a coincidence point of fk and a coincidence point of j~ can never correspond 
to the same coincidence point. 

We see that the argument expressions fall into equivalence classes by the 
relation 

fk--J~ iff l y d k m o d ( d  1 - d2) ,  

and the coincidence points split into I d ~ -  d2[ classes. Two coincidence points of 
f ( z )  and g(z )  are in the same class iff they come from coincidence points of the 
same argument expression. 

To show that a map f of degree d 1 and a map g of degree d 2 have at least 
Idl -d21  coincidence points, we only have to show that every coincidence point 
class is not empty, or equivalently, that every argument expression has a 
coincidence point if d 1 ¢ d : .  We have 

)~(tb + 2~r) - fk(4~) = 2,n'd 1 
and 

g(O + 2~r) - g(q~) ~ 2~rd2, 

and therefore g(4~)-)~(q~) takes on different signs when ~b approaches +oo or 
-~c. That  means that fk has at least one coincidence point. 

Above  example is a generalization of the approach taken by Nielsen in his 
original paper [70], in which he determined the minimum number of fixed points 
of a continuous mapping of a torus into itself. In general Nielsen fixed point 
theory determines equivalence classes. For an introduction to Nielsen fixed point 
theory see, e.g., Brown [121 or Jiang [47]. 

Fixed point classes are defined as follows. 

DEFINITION.  Two fixed points x 0 and x~ ~ X of a mapping f : X---~ X belong 
to the same fixed point class iff there is a path c from x 0 to x I such that c is 
homotopic  to fo  c, i.e.,  if it is possible to define a deformation of c into fo  c. 

foc 

X:l. 

c 

Fig. 3. Illustration of homotopic paths c and fo c used in Nielsen fixed point theory. 
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Nielsen fixed point theory tries to determine the minimum number  of such 

equivalence classes. The  importance of Nielsen fixed point theory in the context 
of homotopy  algorithms lies in the fact that the Nielsen number  N ( f ) ,  i.e., the 
number  of fixed point classes, is a homotopy-invariant .  That  means,  if a map has 
N ( f )  fixed points, then any map homotopic  to f has at least N ( f )  fixed points. 
We will use this fact to establish the covergence of Kuhn's  algorithm in the case of 
multiple roots (simple roots are adequately dealt with in Kuhn 's  paper  [57]). 

8. Correction to Kuhn's Convergence Proof 

First we show that a polynomial  of degree n behaves like z n for large [z I. Given 
the polynomial  

f ( z )  =- z n + a l  z " - I  + . . .  + a n , 

we construct the following homotopy  

f ( z ,  t )  = t f ( z )  + [1 - t ] z  ~ = z n + t [ a i z  ~-1 + . . .  + an] , 

with t E [0, 1]. 

We obtain 

f(z,  t) 
z n l + t [  . . . . . . . . . . . . . . . .  ] 

~0 as I z l ~ .  

i .e. ,  the polynomial  shows the behaviour of z n for large Iz[ (or on a large circle $1). 
From our  example  dealing with coincidence points on ~1 in Section 7, we know 

that  z ~ has n solution classes, i.e., we will have n solution points for z ~ = 0 on the 
unit circle NI ( look for points with argument  value ~b = 0 on S ' ) .  

By using an appropriate  labelling function and piecewise linear approximations 
we replace the large circle S ~ by a piecewise linear approximation and each 

solution point on S 1 by a 1-dimensional simplex labelled, e.g.,  01. We then trace 

the pa th  of these 01 labelled simplices by pivoting steps until we obtain a simplex 
labelled 012. Pivoting can be considered in terms of homotopies.  One pivoting 
step can be considered to be a collapse across a 2-dimensional simplex. 

Because collapsing can be used to establish equivalent paths (simplicial 
homotopies)  and therefore  a connection between pivoting and homotopy,  we will 
give the definition. 

D E F I N I T I O N .  Let  K be a simplicial complex. An n-simplex o- of K is said to 
have a free face z, if ~- is an (n - 1)-face of o- but is a face of  no other  n-simplex of 
K. If  ~r has a free face, then K -  cr - z is a subcomplex of K. 

The  process of  passing f rom K to K - ~ - ~- is ca l l edan  e lementary collapse. If  
L is a subcomplex of K, K is said to collapse to L,  written K N L, if L can be 
obta ined  f rom K by a sequence of e lementary collapses. 
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U 

/ 

/ t / /  

/ / /  

U 
/ 
/ 
/ 

/ / /  

/ / /  

Fig. 4. Illustration of a collapse of K onto L. 

For  more details on collapsing see, e.g., Zeeman [100, chapter 3], Rourke and 
Sanderson [80], and Maunder  [65]. 

We consider completely labelled simplices (i.e., simplices labelled 012) as 
approximations to the zeros of the polynomial f(z) in the complex plane C. For a 
polynomial of degree n we have on a large circle S 1 (i.e., on the boundary of the 
region) a behaviour like z n. Each of the n solutions to z ~ = 0 on the boundary 
circle S t, i.e., z ~ S 1, belongs to a different solution class. Replacing the large 
circle S 1 by a piecewise linear approximation to S 1 is a homotopy.  Each of the n 
solutions on the boundary of S 1 is replaced by a simplex labelled 01. We can 
regard pivoting i~n order  to find a simplex labelled 012 as replacing the piecewise 
linear approximation to the large circle S ~ by a sequence of homotopic piecewise 
liner circles (we consider only piecewise linear circles in C such that II ~(z)ll ~ 0 o n  

such a piecewise linear circle and therefore we retain the number of solution 
classes according to Nielsen). 
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We now consider the piecewise linear path generated by the vertices which are, 
e.g. ,  labelled 0. This piecewise linear path can be regarded to be a piecewise 
linear approximation to the original continuous path from the boundary to the 
actual zero. The original continuous path leads from the boundary to a zero, the 
piecewise linear approximation leads from the piecewise linear boundary (i.e.,  
f rom a simplex labelled 01) to a piecewise linear approximation of the zero (i.e., 
a simplex labelled 012). So, despite the fact that we are on a triangulated region 
with discrete vertices, we can talk about continuous paths from the boundary to 
the approximate solutions. 

We now consider grid refinement (and therefore convergence to the solutions of 
the polynomial f(z) = 0, z E C, for finer and finer grids). First we use the simplices 
labelled 012 obtained in the starting layer d = 0. We assume we have a piecewise 
linear circle S0~ 2 in layer d = 0, which includes all the simplices labelled 012 
obtained by pivoting from the large circle S 1 on the boundary. We further assume 
that the faces labelled 01 of the simplices labelled 012 are part of this piecewise 
linear circle. We now pivot with the simplices labelled 012 until we are in a layer 
which gives us the required accuracy (i.e., we pivot from layer d = 0 to layer 
d = k). Because pivoting changes one vertex of a simplex at a time, we can always 
deform the circle S012 into another circle homotopic to S01~, and which includes 
the new vertex if the new vertex is labelled 0 or 1. Proceeding in this manner  until 
layer d = k, we will have the same count of smaller simplices (labelled 012) as in 
the starting layer d = 0 (but we have a more accurate approximation to the zeros 
of the polynomial f(z)) and a new circle homotopic to S012 (therefore according to 
Nielsen retaining the number of solutions). Using collapsing we can then deform 
the circle S012 in such a way, that the circle in its entirety is in layer d = k (we can 
do this without changing the count of simplices labelled 01, if we use free edges 
labelled jj with j either 0, 1, or 2, and collapse a 2-dimensional simplex only onto 
an edge again labelled jj).  

Another  way of looking at the process of pivoting from layer d = 0 to layer 
d = k, is to regard going to a finer grid as replacing one piecewise linear 
approximation of the polynomial f(z) with a finer piecewise linear approximation 
of f(z). 

If on the other  hand, we go back to the boundary where we started the 
algorithm (i.e., layer d = 0), and pivot with the simplices labelled 01 on the 
boundary  to the boundary of the region with the finer grid (i.e., we pivot 
restricted to the boundary from layer d = 0 to layer d = k), then this can again be 
regarded as a homotopy of piecewise linear circles. The number of simplices 
labelled 01 will be the same as before (in other  words according to Nielsen the 
number  of solution classes will be the same). If we then pivot from the boundary 
of the region with th finer grid (i.e., from the boundary of layer d = k) into the 
interior of that region, we will again obtain the same number of simplices labelled 
012 (being a bet ter  approximation than the simplices labelled 012 in the starting 
layer d = 0). 
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vertex 

labelled 0 

dropped 

- -  --o ] ' / / ~  / I 

, /  

o 

- -oi /7 - - ~ vertex 
NZ / 2/~ l a b e l l e d  1 

/-  

0 1 

vertex 
l a b e l l e d  2 
d r o p p e d  

........... path of old circle 

path of new circle 

Fig. 5. Deformation of part of a piecewise linear circle during pivoting for grid refinement. 
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The  two approximations,  i.e., two simplices obtained by (i) first pivoting in the 
starting layer d = 0 f rom a simplex labelled 01 on the boundary to a simplex 

labelled 012 and then using grid refinement; and (ii) first pivoting f rom a simplex 

labelled 01 from the boundary  of the starting layer d = 0 to a simplex labelled 01 
on the boundary  of the layer d = k with finer grid and then into the inside of the 

layer d = k until we find a simplex labelled 012, are in general not the same. 

Nevertheless ,  these two solutions (bet ter  the two 01 faces of the two simplices 
labelled 012) can be obtained f rom each other by homotopy  of circles 

(homotopies  of piecewise linear approximations of circles) and are therefore  in 
the same solution class! 

Fur ther  grid refinement will give a bet ter  and bet ter  approximation and because 
a solution f rom one solution class can never  be deformed into a solution f rom 
another  solution class (a result of Nielsen fixed point theory) we have our 

convergence proof. 
This proof  holds for simple and multiple roots. For small enough mesh sizes 6 

we can isolate roots in the following sense. If  the actual roots (simple or multiple 
ones) of the polynomial  f(z) are more  than 2(6n6)/~- + 26 apart,  then we can 

draw a piecewise linear circle around each simple root or a piecewise linear circle 

boundary interior 

p i v o t i n g  from 

boundary 
l a y e r  d o 0 1  0 1 2  = ) ) ....................... 

pivoting on 

boundary from 

layer d = 0 to 

layer d = k 

layer d = k 
01 

pivoting 

from simplex 

labelled 012 

in layer d = 0 

to simplex 

l a b e l l e d  012 
in layer d = k 

1 boundary 

R ~  ............................. o12+  o12 

layer d = 6) 

Fig. 6. Schematic representation of homotopy equivalence of approximate solutions in 

different layers. 
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around multiple roots. Using piecewise linear approximations we will have a 
single path of simplices labelled 01 from the boundary (i.e., the large circle S t) of 
that layer to the piecewise linear circle surrounding a simple root, or we will have 
more  than one path of simplices labelled 01 (the multiplicity of the multiple root 
number  of paths) from the boundary (i.e., the large circle S l) to the piecewise 
linear circle surrounding the multiple root. The simplices labelled 012 obtained by 
grid refinement, i.e., by pivoting from a simplex labelled 012 in the starting layer 
d = 0 to the refined layer d = k, are inside the above mentioned circles surround- 
ing the roots [by virtue of Nielsen fixed point theory (we preserve solution classes 
and the number of solution classes), by the generalized Sperner lemma (the count 
of simplices labelled 01 on the boundary is the same as the count of simplices 012 
in the interior), and the error estimate (6n8)/Tr, which holds for all roots (simple 
or multiple roots) and draws the simplices labelled 012 closer to a root as 8---> 0]. 

Because in our proof we are always considering homotopies of circles (or 
homotopies  of piecewise linear circles), we are able to show that Kuhn's 
homotopy  algorithm will approximate n different roots of the polynomial of 
degree n (by virtue of the n solution classes). We have therefore clarified the 
convergence process and given a convergence proof without perturbing the 

original polynomial! 

9. Numerical Observations for Kuhn's Algorithm 

What  we now have to explain is the computational experience in which multiple 
roots do not seem to converge to the actual roots. Kuhn [55] uses a labelling 
function which involves arctan(x/y). For small values of x (real coordinate of the 
point z in the complex plane) or y (imaginary coordinate of the point z in the 
complex plane) arctan(x/y) is very sensitive to rounding errors. Our own compu- 
tational tests have led to the observation that different implementations of this 
labelling function lead to different numerical behaviour. 

Use of higher accuracy for the representation of numbers (e.g., use of double 
precision instead of single precision in F O R T R A N ,  or, e.g., of the use of the type 
'double '  instead of 'real' in Turbo PASCAL) leads to different labels near the 
solution and so to different paths near the solutions. 

Another  difference we found in our computational tests relates to the way the 
quotient  (x/y) is evaluated. Separate evaluation of u = (x/y) and then using 
arctan(u) leads to results which are much closer to the true solutions than using 
arctan(x/y)  without evaluating the quotient (x/y) separately. 

Nevertheless, we found that in all cases the solutions were distributed correctly 
in the sense that within a distance of (6n8)/~r from each of the n known solutions 
(including the multiple solutions) we had the correct number of approximate 
solutions. 
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Changes in labels and paths are attributable to the representation of arctan in 
computers. It is difficult to find out how arctan(x/y) is actually represented in a 
particular implementation, but the series expansion of arctan(x/y) including terms 
of the form (x/y) 2j+1 or (y/x)  2j+1 can be very sensitive to small errors in x or y. 

All this indicates that Kuhn's algorithm i~ sound. 

10. Measures of  Efficiency and a Paradox 

A large number of different triangulations for simplicial algorithms has been 
published. A need was felt to be able to compare the 'efficiency' of various 
triangulations. Measures of efficiency were defined and applied to triangulations. 
As a measure of efficiency one could, e.g., count the number of simplices 
traversed by a straight line. For a good introduction see, e.g., Todd [93]. Whereas 
these measures of efficiency of a triangulation (e.g., directional density, horizon- 
tal directional density and vertical directional density for algorithms with grid 
refinement, etc.) gave some indication of the work required in simplicial al- 
gorithms, in general these measures do not catch the advantages gained by grid 
refinement algorithms (or similar schemes). 

To illustrate this let us take a paricular algorithm, namely Kuhn's algorithm for 
finding roots of polynomials. Intuitively it is obvious that when we start with a 
coarse grid and then refine the grid, the work required is less than by using just 
one layer of fine grid (for solutions required to have a certain accuracy 7). In the 
first case we take a small number of large steps on the coarse grid (which bring us 
quickly close to a solution) and then smaller and smaller steps during grid 
refinement (which brings us still closer to a solution). In the second case we will 
have a very large number of small steps on a fine grid (and we will make only slow 
progress towards a solution). For a polynomial of degree n using Kuhn's 
algorithm and only one layer (i.e., one grid size) the number of function 
evaluations in the worst possible case is 

O(n2) . 

If we use the grid refinement version of the algorithm, then the number of 
function evaluations in the worst possible case is 

O(n 3 logz(n/~)) , 

see [58]. 
If we want to obtain solutions with accuracy 7, then above estimates make the 

intuitively better algorithm (i.e., grid refinement) appear to be the inferior 
choice. 

Can one construct measures of efficiency which resolve this paradox? This is an 
open question. 
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11. Systems of Nonlinear Equations and Systems of Polynomial 
Equations 

The success of the constructive version of Brouwer's fixed point theorem and the 
liberation from the shackles of contraction mappings led to more ambitious 
projects. The new aim was to find not just one solution but 'all' solutions of 
systems of nonlinear equations. 

In 1976 Fisher et al. [30] and in 1980 Gould [40] investigated the solution of a 
system of nonlinear equations 

where 

f ( x )  = O, 

f :  Nn___~ Nn , 

by simplical methods. They found that using simplicial techniques is not a 
guarantee for convergence. They gave examples where a simplicial algorithm 
always diverges and they found that reordering the equations and a change in 
labelling function can change convergence. 

Looking back, this state of affairs is not surprising. Following a path of 
simplices is not a guarantee for convergence to a solution, unless theoretical 
convergence results are available. They developed theoretical conditions for 
convergence and for problems satisfying these conditions convergence could be 
guaranteed. At this stage only one solution was involved. For the algorithm the 
product space 

~" x [0, 11 

is triangulated. The algorithm starts in layer 

~"x  {o} 

with an appropriately labelled simplex, and the solution simplex is found in layer 

N" x {1}. 

Charnes et aI. [14] consider a system of n nonlinear equations in n unknowns 

where 

f ( X )  - -  a 

f :  N"---~ N,, . 

Using a homotopy 

H ( x ,  t) = (1 - t ) f ° ( x )  + t [ f ( x )  - a] , 

with 

t ~ [ 0 ,  11,  
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and f°(x) a linear function with known solution 

i f ( x )  = 0 .  

We have again two layers ~ n x  {0} and ~ n x  {1}. The triangulated region is 
~ x [0, 1]. The homotopy can be considered as a map 

H:  ~" x [0, 1]--~ ~" . 

A piecewise linear solution path is then traced from layer ~ x  {0} to layer 
An x {1}. Conditions for convergence are given. Again only one solution is 
involved. 

In 1979 the emphasis changed from finding one solution to finding 'all' 
solutions. What is meant by 'all' solutions is not investigated theoretically and the 
general form of solution sets is not investigated either. Methods are given for 
systems which are dominated by polynomials. 

E.g. ,  Garcia and Zangwill in [37] consider the following system 

z~J+fj(z)=O, j = l , 2 , . . . , n ,  
where 

sj a positive integer, 

Pj: Cn--~ C , f o r j = l , . . . , n ,  

with C the complex plane and C n the n-dimensional complex space, and z C C n. 
The following dominance condition is imposed 

p~z) 

tl-Ty-/, 0 as Ilzjll  , 
sj 

therefore zj dominates the expression P~(z). 
The homotopy 

H:  C n × [0, 1]--~ C n 

has the form 
sj 

Hi(z ,  t) = z ,  + t[Pj(z) + 1] - 1 ,  

j = l  . . . .  , n ,  

t e  [0, 1]. 

We trace the solutions of 

H(z ,  0 = 0 

from t = 0, i.e., 
sj 

z] - 1 = 0 ,  

j = l  . . . .  , n ,  

to t = l .  
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sj 
The use of the dominating terms zj has the effect to make all solutions into 

zero-dimensional  polynomial  ideals, i.e., points. 
The total number  of solutions we will obtain is 

f i S j  . 
j=l  

In a further  paper  [38] Garcia and Zangwill extend their methods to systems of 

the form 

where  

Pj(z)=O, j= l , . . . , n ,  

Pj :Cn-- ->C,  for j = l  . . . .  , n ,  a n d z E C  ~. 

For  polynomials in n variables the following dominating condition is imposed 

~ -->0 as Ilzjl[--, , 

sj 
i .e. ,  Qj(z) = z i - 1 dominates Pj(z). 

The following homotopy  

H :  C n x [0, 1 ] ~ C  ~ 

is set up 

Hi(z, t) = [1 - tlQj(z) + tPj(z), 
j = l  . . . . .  n ,  

t E  [0, 11 . 

As before we trace solution paths f rom t = 0 to t = 1, In their paper  they discuss 
path  following by differential equations and simplicial pivoting. A regularity 
condition is imposed on the Jacobian in order to make sure that there is only a 
finite number  of solutions. Because it is thought that one can only cope with a 
finite solution set, everything is done to ensure that the solution set consists only 

of a finite number  of points. 
In Garcia  and Zangwill [39] the path following approach for more  than one 

solution is further specialized to polynomial  systems in more  than one variable. 
By now it has become clear that polynomial systems in more  than one variable are 
systems which are much easier to control than a general system of nonlinear 
equations.  They use various dominating terms, which make sure that the solution 
set are zero-dimensional  polynomial  ideals, i.e., points. 

Koj ima and Mizuno [52] take up polynomial  systems of the form 

sj 
zj + e j ( z ) = 0 ,  j = l , 2  . . . .  , n ,  

and impose a dominating condition 
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as ILzjll-   

A homotopy  for finding the total number of solutions 

l Isj 
j - -1 

is discussed. For  the actual path following grid refinement is used. For the first 
t ime we have a paper which includes estimates for grid sizes for polynomial 
systems. For  general nonlinear systems such estimates for grid sizes, which are 
important  for the actual implementation of the algorithm, seem to be very 
difficult to obtain. 

We have given a selection of papers dealing with systems of nonlinear equations 
and we have traced the development of algorithms for systems with more than 
one solution. The work of these researchers has highlighted a number of 
questions arising in connection with the solution of systems of nonlinear equa- 
tions. What  are 'all' solutions? Can we only deal with zero-dimensional solution 
sets, i .e. ,  points as solutions? We know that general solution sets are much more 
complicated (as an example consider, e.g., the intersection of two cylinders). 
What  can we say about the homotopy invariance of the number  of solutions? 
(e.g., in JR" or in Cn). When do paths diverge to infinity? 

The developments outlined in this section, important as they are, do not have 
the same clean theoretical background as we have seen, e.g., in Sperner 's lemma 
or  Brouwer 's  fixed point theorem. Some authors use Bezout 's  theorem [7] to 
determine the number  of solutions of polynomial systems. Bezout 's  theorem 
seems to provide a theoretical justification for the use of dominating terms, but 
Bezout 's  theorem is material that does not quite fit into a homotopy context. 
Bezout 's  theorem is from algebraic geometry,  which is not concerned with 
homotopies.  The main objection to the use of Bezout 's  theorem on N~ (or C ~) is 
a homotopy  result from Nielsen fixed point theory, which says that on N" (or on 
C ' )  the number  of fixed point classes is ~<1 (this result holds in general for simply 
connected spaces). Therefore ,  whatever the number of intersections on [R" (or on 
C ' )  obtained by Bezout 's  theorem, these intersections (or solutions) can then be 
deformed into ~<1 solution classes. 

If we want to maintain a homotopy approach and at the same time work with 
more than one solution, then Nn (or C n) can immediately be ruled out as a 

suitable space. In order  to conserve the homotopy spirit, we have to look for 
other  spaces which allow an arbitrary number of solution classes. In the next 
section we will see that there are such spaces and we can work in such spaces in a 
natural way. 

12. Further Developments of Methods for Polynomial Systems 

If we consider the solution of general systems of nonlinear equations on compu- 



342 w. FORSTER 

ters we will not get very far unless we take the finiteness of processes on 
computers into account. This means in particular that we will only be able to find 
a finite number  of solutions however sophisticated our methods. Functions (e.g., 
sin(x), etc.) are always approximated on computers. These approximations 
usually take numerical accuracy into account, but violate topological properties. 
A typical approximation is by a suitable polynomial with a finite number of terms. 
Such polynomial approximations can give a good numerical approximation in a 
given region but obviously such approximations cannot reproduce the fact that a 
function has, e.g., an infinite number of different zeros. Polynomials are not only 
suitable for approximating functions, but are also extremely suitable for our 
considerations. We will therefore assume that all functions in our system of 
nonlinear equations have been replaced by polynomial approximations. The 
Stone-Weierstrass approximation theorem states that any continuous function 

F :  C"- -~C,  

from a suitable subset of the n-dimensional complex space C n into C, can be 
uniformly approximated by polynomials in z i and the complex conjugate of zi, 
i = 1 , . . . ,  n. Using Nielsen fixed point theory we are then able to make a priori 
statements about the number of solution classes of such a system. Furthermore,  
we are able to develop globally convergent algorithms which will find an 
approximation to a representative from each solution class with a given accuracy. 
We will also be able to give an a priori estimate for the size of the region to be 
triangulated and the mesh size. In addition, we will be able to give error estimates 
and complexity results for this algorithm. 

One of the advantages of using the Nielsen approach with solution classes is 
that the algorithm is not restricted to systems with zero-dimensional polynomial 
ideals as solution sets, i.e.,  points as solution sets. Furthermore,  using the 
equivalence of solutions (as defined in Section 7) allows to resolve a widely 
discussed computational problem of nonlinear systems: How to treat solutions 
which are not points, but are lower dimensional manifolds. Using the Nielsen 
concept of solution classes this problem is resolved in an elegant manner  by 
finding a representative of each solution class. 

Let  us first look at one polynomial in one variable and then generalize some of 
the material to systems of polynomials. 

For a single polynomial f (z)  in one variable z we consider a map 

/(z): C--> C, 

with C is the complex plane. Next we consider a map 

p(z): S1--> S 1 , 

from a circle S 1 = {z ~ C[]z] = r} in the complex plane C to itself, where 

f (z )  
p(z ) -  IIf(z)fl r .  



SOME COMPUTATIONAL METHODS 343 

From Section 8 we know that  a polynomial  of degree L behaves like z c for large 
[z[. Fur thermore ,  this means that Ilf(z)[I ~ 0  o n  a large circle S ~. 

Now we generalize to systems of polynomials 

f (z ) :  C'---> C" , 

in n variables z = (z 1 , z ~ , . . .  , z~) E C ", where 

f ( z ) = ( f l ( z ) ,  f 2 ( z ) , .  . . , f ~ ( z ) )  . 

Earl ier  papers  explaining this approach are Forster  [33, 34, 35]. We consider maps 

of the form 

~ ( z ) : C  ~---->Cj, for j = l , . . . , n ,  

where  C n is regarded as cartesian product  of complex planes Cj,  i.e., 

C ~ =C~ x . . .  x Cj x . - -  x C~,  

and 

L / l m a x  L j n m a X  

fj(z,  , zo) = E " "  E o(i) _',, ,o . . . .  U l D . . . l ] n Z ,  1 ° ' "  Z ~  , 
l,=o G=o 

with in general complex coefficients a (i) 

For  j = 1 . . . . .  n, Lj~max is the highest power of z,  in 
f j ( z l , . . . ,  z ~ ) , .  . . . .  Ljnmax is the highest power  of z n in ~ ( z l , . . . ,  zn). 

We assume that each equat ion 

~ ( z ) ,  j =  l ,  . . , n , 

has a unique dominating term, i.e., there is a term such that the sum of the 
exponents  

L ] I  + L j 2  + " " + L i n  

is strictly larger than the sum of the exponents  

t .  + l ~ + - - .  +/jo 

of any other  term in that equation. Fur thermore ,  we assume that the coefficient of 
the dominat ing term 

z f -  . . . .  & 

of equat ion j, j = 1 , . . . ,  n, is equal to 1, i .e.,  we have for the coefficient 

a (j) = 1  for j = l ,  . n .  
L j l ' " L j n  ' " " ' 

Later  we will discuss how a general polynomial  which has no unique dominant  
t e rm can be brought  into this form, 

We now investigate the behaviour  of f j (z  1 . . . . .  z . )  for large values of Izll, 
]z 2 ] , . - - ,  ]z.]. We define homotopies  
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L n 
f j ( z ,  . . . . .  ~ , ,  t )  = t U z ,  , . . . , ~ , )  + [1 - t ] z f J ,  . . . z ;  , 

for all j = l , . . .  , n ,  and with tE[O,  1]. For large [zl] , ]z2] . . . . .  [z,[ we obtain 

f j ( ~ , , . . . ,  z,,, t) 
= l + t [ - " ] ,  

z L j l  T L j 2  . L 'n  
1 ~ 2  " " Z n J  

with [---]---~ 0 as Iz~l---~ ~,  I z 2 1 - - ~ , . . . ,  Iz, I---> ~. The p o l y n o m i a l f i ( z ~ , . . . ,  G )  
behaves for large Iz,t, I z ~ l , . . ,  Iz, I like 

z f J  1 • , . znLJn , 

i.e.,  it wraps round an n-dimensional torus 

~°:s~×s~×...x£. 
The polynomial f j ( z ~ , . . .  , z , )  wraps Ltl times round the first circle S~, wraps Lt2 

times round the second circle, S ~ , . . .  , wraps Lj, times round the nth circle S~. 
This observation together with an existing result for the Nielsen number for the 

n-dimensional torus Y" allows us to select the right space for homotopy al- 
gorithms for systems of polynomial equations. Instead of considering maps f from 
the n-dimensional complex space C" to itself, i.e., 

f(z): C"-~ C" 

(which has the disadvantage mentioned earlier of allowing only ~<1 solution 
classes), we consider maps p from the n-dimensional torus T" to itself, i.e., 

p( z )  : Y'~ ~ ~" 

(which, as we shall see, allows any number of solution classes). 
The  n-dimensional torus ~-" is a subspace of the n-dimensional complex space 

C" and a generalization of a circle S ~ considered as subspace of the complex plane 
1 1 1 

C. We take a circle S t from each complex plane C t and obtain S~ × . . .  x S t x 
• . .  x S ~ E g ~ x . . - x C j x - . . × C ,  o r ~ - " E C  ~. 

In particular, we have 

p ( z )  : 7 '~ ~ 7 "  , 

where 

p ( z )  = ( p , ( z ) ,  p 2 ( z )  . . . . .  p . ( z ) )  , 

and the maps pt(z)  from the torus ~-n to a circle S~ 

pt(~) : w ~  s ; ,  

with 

f j ( z  1 . . . . .  z , )  
P J ( Z I ' " " " '  Z n )  • ] ] f j~ l  i :~ 2n)[[ yj 

and the j th  circle S~ = {z t E ct I Izjl = r ) .  
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On a large torus ql TM the polynomial  £. behaves like 

• L n zL111 • • . Z n l  

and therefore  

l iD(z, . . . . .  z:)l l ~o  

on this large torus T ' .  
We can then use the Nielsen number  to draw conclusions about  the number  of 

zeros of the system 

p(z )  : Y"---, T" , 

and use this for our system of polynomial  equations 

f(z): C"--, C" .  

The  Nielsen number  for the n-dimensional torus T = has been determined in a very 
elegant way by Brooks et al. [9]. For an earlier s tatement  of the minimum number  
of  fixed points on an n-dimensional torus see Satz II  in Hopf  [45]. 

The  min imum number  N of roots for a system of polynomial equations 

p(z): T"--* T = 

with dominat ing terms 

zr~,l . . ,  zr,= , 

is given by 

N =  dot / " 

/ LL'=~ 

j = l , . . . , n ,  

/~1. 7 

/ 
L~.J  

All the entries of  this determinant  are exponents  of zj, j =  1 . . . . .  n, and 
therefore  integers. We can have any N >~ 0 as the number  of  solution classes and 

this is what  we expect for systems of polynomial equations. The space T" is not 
simply connected and therefore the earlier ment ioned limitation for spaces like Rn 
or C n (number  of solution classes ~1 )  does not apply. On g"  we can have any 
number  of  solution classes. 

We now describe the labelling function, i.e., the method used to attach labels to 
the vertices of our triangulated region. 

We have a system of n equations 

k(z): c =~c j ,  j : l , . . . , . .  

Each equat ion fj(z) is a map from C n into the complex plane C i . We subdivide 
each complex plane Ci into three sectors and indicate this subdivision into three 
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sectors by the argument values /30, /3t, and /32 (i.e., all complex planes Cj are 
subdivided into the same three sectors). We test arg f , -k  with the index k starting 
from 0 and running to n - 1 (in that order). 

We label 2 ( n -  k) if /30 ~<arg fn </3~ and 

/3o <~ arg fn-1 </31 and 

/30 ~ arg f~_k + ~ </31 and 
/32 ~ arg fn-~ < 13o + 2 ~  ; 

We label 2 ( n -  k ) -  1 if /30 ~< arg f~ </31 and 
/30 <~ arg f~_ 1 < /31 and 

13 o ~< arg fn-k+l </31 and 
/31 ~ arg fn-k </32 ; 

We l a b e l 2 ( n - k ) - 2  if fn k = 0 ;  

{We label 2 if 130 ~< arg fn < 131 and 
/30 ~< arg f~-I </31 and 

/30 ~< arg f2 </31 and 
/32 ~< arg ft </3o + 2~- ; 

We label 1 

We label 0 

if /30 ~< arg f,  </31 and 
/30 ~< arg f~-i < 131 and 

/30 ~< arg f2 </31 and 
/31 ~< arg fl </32 ;} 

if /30 ~< arg fn </31 and 
t30 ~< arg f~-i </31 and 

/30 ~< arg L </31 and 
/3o ~< arg fl </31 • 

This labelling function is a generalization of a labelling function given by Kuhn 
[55]. Each vertex of the triangulation receives a unique label. {The labelling 
functions for label 2 and label 1 are already included in the general case and have 
therefore been put into brackets).  

For the implementation of the algorithm we need an a priori estimate which 
connects the mesh size of the triangulation and the radii of the circles which make 
up the n-dimensional torus ~-n. For a single polynomial in one variable Kuhn [57] 
has established a connection between the mesh size and the radius of the region. 
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We use similar techniques for our systems of polynomial equations 

f i ( z , , . . . , z , ) ,  I = 1 , 2  . . . . .  n. 

First we establish conditions for a completely labelled simplex (i.e., a simplex 
labelled 0, 1 , . . . ,  2n) to exist in a certain region. What we will obtain is a vast 
generalization of the well known inequality due to Cauehy [13], which says that all 
the zeros of a polynomial are inside the circle [zl < 1 + maxklakl. 

With p.j the mesh size (related to equation fj), a (j) the sum over all terms such s, 
that 

ljl q- lj2 -}- " ' "  + l]n = 4 , 

i.e.,  
L]lmax L]nmaX 

~(J) ZIJ 1 I- n 
a(J)~'jj Z " ' "  Z "ljl...lj, l "''Z-Jn , 

O,=° 0.=o 

l~,+---+ 6.= 6 

the radius Rj (related to equation fj) 

Rj > maxlaS[)[ + 1,  
J1 

a constant Kj 

a(J) 
Kj  = m a x  ljt...lj n lj l'"ljn 

and ~ the smallest sector in the labelling function, i.e., 

ol = min(/3~ -/30,/3~ - 131,/3 o + 2~r - / 3 2 ) ,  

we obtain the following inequality 

[ max,,'a j" 1 ", sin° 
Ol t*,/> 1 ~-7_- ~ [i_01Lj~max][fl Li~max]K j 2cos 

If this inequality holds for j = 1 , . . . ,  n, then there are completely labelled 
simplices in a region (z~ . . . . .  z , )  E C" such that 

z~-,, • • • z.~, - > R~"++~' ° 

is satisfied for all j = 1 , . . . ,  n. We have set R > maxjRj. 
If we do not want completely labelled simplices in this region, then we have to 

establish a contradiction. 
One way of obtaining a contradiction is to keep R fixed (R/> maxj Rj) and 

make the mesh size ixj to violate at least one of the equations, i.e., make 

.,<[, I , ,  

OL R--~-I d [i=II Ljimax][,}, Lj, max]Kj 2cos  B- 
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for at least one j = 1 . . . .  , n. If this is the case, we cannot have completely 
labelled simplices in the region ( z ~ , . . . ,  z , , )E  C ~ determined by 

z~ ' I" '"  z2J" > R Lj'+'''+Lj" . 

For a fixed R, Equation (A) gives the mesh size /x we need for our algorithm. 
Another  possibility to obtain a contradiction is to keep a mesh size/xj fixed and 

increase the radius Rj until Equation (A) is satisfied. Again, if this is the case, we 
cannot  have completely labelled simplices in the region ( Z l , . . . ,  z,,)@ C" such 
that 

zL]I  • , Ljn ~> R L j l + ' " + @ n  • Zn 

Our next step is to describe the pivoting algorithm for our system of polynomial 
equations 

f j ( z l , . . . ,  z , ) = 0 ,  ] = l , 2 , . . . , n .  

In order  to obtain starting simplices it is convenient to work in polar coordinates 

zj=r]exp(iqS]) ,  for l~<]~<n .  

We keep. the~ radius1 rj = ff fixed (to simplify matters, we assume that the radius of 
all circles S 1 , S a , . . . ,  S ,  is the same). Now we consider the n-dimensional cube 

0~<qSj~<2~ - ,  for l< - j<~n .  

We assume we have computed the Nielsen number and it is not zero. We select a 
nonsingular 1 x 1 submatrix from the matrix of exponents (dominant terms). E.g.,  
the exponent  of z s in equation k is Lks ¢ 0 .  We make this equation the last 
equation,  i.e., equation number n, and rename the variable z, into the variable z ,  
(and rename the old variable z ,  into Zs). The nonzero exponent Lks of the former 
variable z, (now z , )  is now called L,n.  We then pivot from 0 to 2vr along the 
corresponding axis, now called qS,. The nonzero exponent  now called L , ,  will 
lead to L , ,  one-dimensional simplices which contain the label 2n - 1 and another  

label. 
Then we extend the nonsingular 1 x 1 submatrix to a nonsingular 2 x 2 sub- 

matrix by selecting appropriate elements from the matrix of exponents. We make 
the new equation the last but one equation, i.e., equation number n - 1 ,  and 
rename the new variable z t into the variable z,_~ (and rename the old variable 
z,,_ I into z,). We then pivot in the plane determined by the coordinate axes now 
called q5,_1 and ¢,,. For each of the one-dimensional simplices (with one label 
2n - 1 and another label) obtained by the previous step we pivot from 0 <~ ¢ , - i  ~< 
2~r. The number of two-dimensional simplices which have labels 2n - 1, 2n - 3, 
and another  label will be the same as the determinant of the nonsingular 2 x 2 
submatrix. 

Then we extend to a 3 × 3 nonsingular submatrix and rename the new variable 
into z ,_  2. For each of the two-dimensional simplices (with labels 2n - 1, 2n - 3 ,  
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and another label) obtained by the previous step we pivot from 0 ~< 4~,-2 ~< 2zr. 

The number  of three-dimensional simplices which have labels 2 n -  1, 2 n -  3, 
2n - 5, and another label will be the same as the value of the determinant of the 

nonsingular 3 x 3 submatrix. 
We continue this process until the full matrix of exponents is dealt with. We will 

find in the n-dimensional cube 

0~<4~j~<2~, j = l , . . . , n ,  

the Nielsen number of n-dimensional simplices labelled with the n + 1 labels 
2n - 1, 2n - 3 , . . . ,  3, 1, and another label. 

On this cube all coordinates rj, j = 1 . . . .  , n, are kept constant, i.e., rj = R = 

const., j = 1, . . . , n. 
Now we take one of the n-dimensional simplices already found and allow, e.g., 

r 1 to decrease in the first pivoting step. We pivot until we have found an 
(n + 1)-dimensional simplex with an additional label not yet in our set of labels, 

i.e., n + 2 different labels. All the other radii rj,  j = 2 , . . . ,  n, are kept constant, 

i .e.,  rj = R = const. 

Then we allow, e.g., r 2 to decrease in the first pivoting step and pivot until we 

have found an (n + 2)-dimensional simplex with an additional label not yet in the 
set of our labels, i.e., with n + 3 different labels. The radii ri, j = 3 . . . .  , n, are 

kept constant, i.e., rj = R = const. 

We continue in this manner until we have found a 2n-dimensional simplex with 

2 n + l  different labels, i.e., a completely labelled simplex with labels 

0, 1 , . . . ,  2n. We go through this process with all the n-dimensional simplices we 
have found in our n-dimensional cube 

0 ~< qS/~<2Ir, f o r j = l , . . . , n .  

The n-dimensional simplices obtained after applying above procedure represent 
approximations to zeros of our system of polynomial equations. Illustrations for 

two polynomials in two variables and three polynomials in three variables can be 

found in Forster [34]. 

We give an error estimate. If we have found a completely labelled 2n-dimensional 

simplex and we have used the labelling function given earlier, then a root of the 

system of polynomials 

f j ( z l , . . . ,  z , ) = 0 ,  j = l , 2 , . . . , n ,  

is closer to this 2n-dimensional simplex, than 

/x g m a x  , a , 
o/ 

where Ix is the mesh size, a is the smallest sector in our labelling function, and L 

is the largest total degree of our system. 
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Next we give a computational complexity result. In order to compute all N 
(Nielsen number) roots of the system of polynomial equations 

f j ( z l , .  . .  , z , ) = O ,  j =  l , 2 , .  . . , n ,  

with accuracy 77, the number of system evaluations is not greater than 

O(N(2n)!(L2)") , 

where N is the minimum number of roots, i.e., the Nielsen number, n is the 
number of variables, and L is the largest total degree of the system. 

For practical applications it is probably prudent to choose a variable grid size in 
rfdirection,  i.e., a grid size which grows with the radii rj, j = 1, 2 , . . . ,  n. One 
may then have to adapt this error estimate. 

If we use grid refinement the corresponding computational complexity result is 

O(N(2n  + l) '(L2)")log2 ~-~) , 

where N is the minimum number of roots, i.e., the Nielsen number, n is the 
number of variables, L is the largest total degree of the system, tz is the mesh size 
(assumed to change with radius R), and r/is the required accuracy. 

If the system 

f ~ ( z  1 . . . . .  Z n ) = O  , j =  1 ,2 , .  . . . .  n ,  

has one or more equations with no unique dominating term, then we supplement 
the system by one dummy equation fo(Zo) of the form 

z 0 = 0.  

We add to each equation j = 1 , . . . ,  n, a polynomial ideal, i.e., a term 

Lj + 1 Lj 
Z 0 Z j  , 

where Lj = Lj~ + . . .  + Ljn, i.e., Lj is the largest total degree of equation j, and 
solve the new system 

fs.(zo, zl . . . . .  z, )  = 0 ,  j = 0 ,  1,2 . . . . .  n .  

The new system has 

j = t  

solutions. 
We make use of the following inequality for determinants of n × n matrices A 

with elements Lii 

d e t A ~ < F [  ~ [Lij [. 
i = l j  1 
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This inequality shows that the Nielsen number of the new system is larger than or 
equal to the Nielsen number  of our original system. The new system has the same 
solutions as the old system (apart from coordinate z0, which we do not take into 
account in this context) and a number of additional solutions arising from the 
dominating terms added. 

A more  sophisticated method to deal with one (or more) equations with no 
unique dominating term is the following. Take the largest minor of the matrix of 
exponents of the equations which have dominating terms. Then use this (n - 1) x 

(n - 1) matrix together with the total degree of the equation with no dominating 
term to make it into the n × n matrix for computing the Nielsen number.  This 
corresponds to just adding the dummy equation z 0 = 0 and adding a dominating 
term only to the equation with no unique dominating term. Obviously the Nielsen 
number  obtained in this way is smaller and therefore we save computational effort 
for additional paths. 

One can show that the additional solutions introduced by either of the above 
methods lead to solutions at infinity (or to solution paths diverging to infinity). 

We finish this section by mentioning results for arbitrary polynomial systems of 
m equations in n unknowns, i.e., we consider systems of the form 

f j ( z l , . . . ,  z ~ ) = 0 ,  j = l , 2 , . . . , m .  

We assume that each equation has a unique dominating term. We then have an 
m × n matrix of exponents. 

For  systems with m < n the Nielsen number is given by N = g.c.d, of deter- 
minants of all rn x m submatrices. Systems with m > n are ill-conditioned and the 
Nielsen number  is zero (algebraic geometry gives results for such systems, but 
they are unsuitable for a homotopy approach). 

13. Conclusions 

Given a system of nonlinear equations 

j=1,2 ..... m, 

all the information about the solutions of such a system is already contained in the 
system. Looking at the interplay between mathematics and machines, one can 
then try to match mathematical theory to the properties of computers. On 
computers functions have to be approximated, e.g., by polynomials. This turns 
out to be beneficial for our theoretical considerations. It allows us to utilize 
Nielsen fixed point theory and to obtain a priori  a finite number of solution 
classes. Piecewise linear structures, like simplices, are extremely useful from a 
mathematical  point of view. Vertices of simplices are discrete points and therefore 
especially suited for representation on digital computers. The topological ap- 
proach also makes the results insensitive to small perturbations (rounding errors). 
Pivoting and, in a computational context, new mathematical methods allow the 
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design of globally convergent algorithms. Methods based on Kuhn's  algorithm 

allow us to obtain a pr ior i  error estimates and complexity results. 
The  reliability of the simplicial paths generated by pivoting is obviously a 

blessing for serious applications, especially safety critical applications. The sys- 

tematic  path  following pivoting algorithms offer is far superior to the ad h o c  

decisions one has to make about  the length of a step to be taken in some of the 
non-simplical algorithms proposed and which offer no guarantee of staying on the 
same path. 

I would like to advance a solution concept,  where the user asks the question, 

i .e.,  the user types in the system of nonlinear equations and nothing but the 
system of nonlinear equations (no guessing of starting values, etc.), mathematical  

theory provides for reliable and efficient algorithms, and the machine provides the 
numerical  answer. Simplicial homotopy  algorithms are a creative step in this 
direction. 
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